高中数学,判断真伪命题
下列命题:①若a+b+c=0,则b2-4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+...
下列命题:
①若a+b+c=0,则b2-4ac≥0;
②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;
③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;
④若a+b+c=0,则一元二次方程ax2+bx+c=0有两个不相等的实数根.
其中正确的命题序号是 展开
①若a+b+c=0,则b2-4ac≥0;
②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;
③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;
④若a+b+c=0,则一元二次方程ax2+bx+c=0有两个不相等的实数根.
其中正确的命题序号是 展开
展开全部
①若a+b+c=0,那么b=-a-c,
∴b2-4ac=(-a-c)2-4ac=a2+c2+2ac-4ac=(a-c)2≥0,
故①正确;
②若b>a+c,a+c若与b符号相同,那么b2-4ac>(a+c)2-4ac=(a-c)2,
∵(a-c)2≥0,
∴△>0,
∴方程有两个不相等的实数根,
又∵a+c若与b符号不相同,
则b>a+c,可能b2<(a+c)2,
则此时△<0,
此时方程无实数根,
故此选项错误;
③若b=2a+3c,那么△=b2-4ac=(2a+3c)2-4ac=(2a+2c)2+5c2,
当a≠0,c=-a时,△>0;当a≠0,c=0时,△>0;当a≠c≠0时,△>0,
∴△>0,
故此选项正确;
④若a+b+c=0,则b=-a-c,
∴b2-4ac=(-a-c)2-4ac=a2+c2+2ac-4ac=(a-c)2≥0,
当a=c≠0时,△=0,当a≠c≠0时,△>0,
∴方程有实数根,
故此选项错误.
故选①③
∴b2-4ac=(-a-c)2-4ac=a2+c2+2ac-4ac=(a-c)2≥0,
故①正确;
②若b>a+c,a+c若与b符号相同,那么b2-4ac>(a+c)2-4ac=(a-c)2,
∵(a-c)2≥0,
∴△>0,
∴方程有两个不相等的实数根,
又∵a+c若与b符号不相同,
则b>a+c,可能b2<(a+c)2,
则此时△<0,
此时方程无实数根,
故此选项错误;
③若b=2a+3c,那么△=b2-4ac=(2a+3c)2-4ac=(2a+2c)2+5c2,
当a≠0,c=-a时,△>0;当a≠0,c=0时,△>0;当a≠c≠0时,△>0,
∴△>0,
故此选项正确;
④若a+b+c=0,则b=-a-c,
∴b2-4ac=(-a-c)2-4ac=a2+c2+2ac-4ac=(a-c)2≥0,
当a=c≠0时,△=0,当a≠c≠0时,△>0,
∴方程有实数根,
故此选项错误.
故选①③
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询