如图,在四边形ABCD中,∠DAE=∠ABC= 90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G。
如图,在四边形ABCD中,∠DAE=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G。设AD=a,BC=b。求CD的长度(用a,b...
如图,在四边形ABCD中,∠DAE=∠ABC= 90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G。设AD=a,BC =b。求CD的长度(用a,b表示);求EG的长度(用a,b表示);试判断EG与FG是否相等,并说明理由。
展开
1个回答
展开全部
切线的判定和性质,切线长定理,平行的判定和性质,平行线分线段成比例定理,相似三角形的判定和性质。 【分析】(1)由已知可得DA、CB和CD都要为⊙O的切线,根据切线长定理即可得出结果。 (2)由EF⊥AB,CB⊥AB 可得EF∥CB,从而根据相似三角形的判定和性质可求得EG的长度。 (3)由DA∥EF∥CB,根据平行线分线段成比例定理和相似三角形的判定和性质可求得FG的长度,与EG的长度比较即可得出结论。 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询