secx的不定积分
8个回答
展开全部
secx的不定积分是[ln(1+sinx)-ln(1-sinx)]/2+C
secx=1/cosx∫secxdx=∫1/cosxdx=∫1/(cosx的平方)dsinx=∫1/(1-sinx的平方)dsinx
令sinx=t,代入可得
原式=∫1/(1-t^2)dt=1/2∫[1/(1-t)+1/(1+t)]dt=1/2∫1/(1-t)dt+1/2∫1/(1+t)dt=-1/2ln(1-t)+1/2ln(1+t)+C
将t=sinx代人可得原式=[ln(1+sinx)-ln(1-sinx)]/2+C
扩展资料
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量。
参考资料百度百科-不定积分
展开全部
有好几种方法的:最常用的是∫ secx dx = ln|secx + tanx| + C
第一种最快:
∫ secx dx
= ∫ secx • (secx + tanx)/(secx + tanx) dx
= ∫ (secxtanx + sec²x)/(secx + tanx) dx
= ∫ d(secx + tanx)/(secx + tanx)
= ln|secx + tanx| + C
第二种:
∫ secx dx
= ∫ 1/cosx dx = ∫ cosx/cos²x dx = ∫ dsinx/(1 - sin²x)
= (1/2)∫ [(1 - sinx) + (1 + sinx)]/[(1 - sinx)(1 + sinx)] dsinx
= (1/2)∫ [1/(1 + sinx) + 1/(1 - sinx)] dsinx
= (1/2)[ln|1 + sinx| - ln|1 - sinx|] + C
= (1/2)ln|(1 + sinx)/(1 - sinx)| + C
= ln| √(1 + sinx)/√(1 - sinx) | + C
= ln| [√(1 + sinx)]²/√[(1 - sinx)(1 + sinx)] | + C
= ln| (1 + sinx)/cosx | + C
= ln|secx + tanx| + C
第三种:
∫ secx dx = ∫ 1/cosx dx
= ∫ 1/sin(x + π/2) dx,或者化为1/sin(π/2 - x)
= ∫ 1/[2sin(x/2 + π/4)cos(x/2 + π/4)] dx,分子分母各除以cos²(x/2 + π/4)
= ∫ sec²(x/2 + π/4)/tan(x/2 + π/4) d(x/2)
= ∫ 1/tan(x/2 + π/4) d[tan(x/2 + π/4)]
= ln|tan(x/2 + π/4)| + C
他们的答案形式可以互相转化的.
第一种最快:
∫ secx dx
= ∫ secx • (secx + tanx)/(secx + tanx) dx
= ∫ (secxtanx + sec²x)/(secx + tanx) dx
= ∫ d(secx + tanx)/(secx + tanx)
= ln|secx + tanx| + C
第二种:
∫ secx dx
= ∫ 1/cosx dx = ∫ cosx/cos²x dx = ∫ dsinx/(1 - sin²x)
= (1/2)∫ [(1 - sinx) + (1 + sinx)]/[(1 - sinx)(1 + sinx)] dsinx
= (1/2)∫ [1/(1 + sinx) + 1/(1 - sinx)] dsinx
= (1/2)[ln|1 + sinx| - ln|1 - sinx|] + C
= (1/2)ln|(1 + sinx)/(1 - sinx)| + C
= ln| √(1 + sinx)/√(1 - sinx) | + C
= ln| [√(1 + sinx)]²/√[(1 - sinx)(1 + sinx)] | + C
= ln| (1 + sinx)/cosx | + C
= ln|secx + tanx| + C
第三种:
∫ secx dx = ∫ 1/cosx dx
= ∫ 1/sin(x + π/2) dx,或者化为1/sin(π/2 - x)
= ∫ 1/[2sin(x/2 + π/4)cos(x/2 + π/4)] dx,分子分母各除以cos²(x/2 + π/4)
= ∫ sec²(x/2 + π/4)/tan(x/2 + π/4) d(x/2)
= ∫ 1/tan(x/2 + π/4) d[tan(x/2 + π/4)]
= ln|tan(x/2 + π/4)| + C
他们的答案形式可以互相转化的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫secxdx
=∫1*secxdx
=∫[(1+sinx)/(1+sinx)]*(1/cosx)dx
=∫[(1+sinx)/(cosxsecx+cosxtanx)]*(1/cosx)dx
=∫[1/(secx+tanx)]*[(1+sinx)/cos²x]dx
=∫1/(secx+tanx)d(secx+tanx)
=ln|secx+tanx|+C
=∫1*secxdx
=∫[(1+sinx)/(1+sinx)]*(1/cosx)dx
=∫[(1+sinx)/(cosxsecx+cosxtanx)]*(1/cosx)dx
=∫[1/(secx+tanx)]*[(1+sinx)/cos²x]dx
=∫1/(secx+tanx)d(secx+tanx)
=ln|secx+tanx|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫secxdx
=∫dx/cosx
=∫cosxdx/cos²x
=∫d(sinx)/(1-sin²x)
=(1/2)∫[1/(1-sinx)+1/(1+sinx)]d(sinx)
=(1/2)[ln(1+sinx)-ln(1-sinx)]+C
=(1/2)ln[(1+sinx)/(1-sinx)]+C
=∫dx/cosx
=∫cosxdx/cos²x
=∫d(sinx)/(1-sin²x)
=(1/2)∫[1/(1-sinx)+1/(1+sinx)]d(sinx)
=(1/2)[ln(1+sinx)-ln(1-sinx)]+C
=(1/2)ln[(1+sinx)/(1-sinx)]+C
追答
=(1/2)ln[(1+sinx)^2/(1-sin^2x)]+C
=(1/2)ln[(1+sinx)^2/(cos^2x)]+C
=ln|(1+sinx)/cosx|+C
=ln|secx+tanx|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询