1/1×2×3×4×5 + 1/2×3×4×5×6 + 1/3×4×5×6×7 + 1/4×5×6×7×8的简算法

 我来答
xuzhouliuying
高粉答主

2016-09-20 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部

解:

1/[n(n+1)(n+2)(n+3)(n+4)]

=¼×[(n+4)-n]/[n(n+1)(n+2)(n+3)(n+4)]

=¼×{ 1/[n(n+1)(n+2)(n+3)] -1/[(n+1)(n+2)(n+3)(n+4)]}

1/(1×2×3×4×5)+ 1/(2×3×4×5×6)+1/(3×4×5×6×7)+ 1/(4×5×6×7×8)

=¼×[1/(1×2×3×4)- 1/(2×3×4×5)+ 1/(2×3×4×5)- 1/(3×4×5×6)+1/(3×4×5×6)- 1/(3×5×6×7)+ 1/(4×5×6×7)- 1/(5×6×7×8)]

=¼×[1/(1×2×3×4)-1/(5×6×7×8)]

=¼×(1/24)[1- 1/(5×2×7)]

=¼×(1/24)([1- 1/70)

=¼×(1/24)(69)/70

=¼×(1/8)(23)/70

=23/2240

更多追问追答
追问
倒数5布求解释与过程
追答
1/(1×2×3×4)-1/(5×6×7×8)
分母还是4个数相乘,比较复杂,为了简化计算,先提取出1/24。
1/(1×2×3×4)提取出1/24以后,就变成1了。1/(5×6×7×8)提取出1/24以后,就剩1/(5×2×7)了,分母乘起来数字很小,不容易错。
只是为了简化计算。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式