
第18题填空题求解! 5
1个回答
展开全部
f(1/x)=(1/x)^2/[1+(1/x)^2]上下乘x^2
=1/(1+x^2)
所以f(x)+f(1/x)=x^2/(1+x^2)+1/(1+x^2)=(1+x^2)/(1+x^2)=1
所以f(1)=1/(1+1)=1/2
f(2)+f(1/2)=1
……
f(n)+f(1/n)=1
所以f(1)+f(2)+f(1/2)+f(3)+f(1/3)+……+f(n)+f(1/n)
=1/2+1+1+……+1
=1/2+(n-1)
=n-1/2
=1/(1+x^2)
所以f(x)+f(1/x)=x^2/(1+x^2)+1/(1+x^2)=(1+x^2)/(1+x^2)=1
所以f(1)=1/(1+1)=1/2
f(2)+f(1/2)=1
……
f(n)+f(1/n)=1
所以f(1)+f(2)+f(1/2)+f(3)+f(1/3)+……+f(n)+f(1/n)
=1/2+1+1+……+1
=1/2+(n-1)
=n-1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询