用高等数学(微积分)求两函数相交形成的图形的重心
4个回答
展开全部
可惜, 楼上解错了。
解答:
解联立方程 : y = x + 2 和 y = x² 得:x₁= -1, x₂= 2, y₁= 1, y₂= 4
水平质心位置 Xc:
Xc = [∫(-1⟼2)(x+2-x²)xdx]/[∫(-1⟼2)(x+2-x²)dx]
= [x³/3 + x² - x⁴/4](-1⟼2)/[x²/2 + 2x - x³/3](-1⟼2)
= (9/4)/(9/2)
= 1/2
竖直质心位置 Yc:
Yc = [∫(0⟼1)(根号y-(-根号y))ydy + ∫(1⟼4)(根号y-(y-2))ydy]/(9/2)
= (2/9)[4/5 + 32/5]
= 8/5
= 1.6
解答:
解联立方程 : y = x + 2 和 y = x² 得:x₁= -1, x₂= 2, y₁= 1, y₂= 4
水平质心位置 Xc:
Xc = [∫(-1⟼2)(x+2-x²)xdx]/[∫(-1⟼2)(x+2-x²)dx]
= [x³/3 + x² - x⁴/4](-1⟼2)/[x²/2 + 2x - x³/3](-1⟼2)
= (9/4)/(9/2)
= 1/2
竖直质心位置 Yc:
Yc = [∫(0⟼1)(根号y-(-根号y))ydy + ∫(1⟼4)(根号y-(y-2))ydy]/(9/2)
= (2/9)[4/5 + 32/5]
= 8/5
= 1.6
展开全部
具体为2楼方法,但是2楼出了个小错误。
应该是是1/2的Y坐标为y在区域内二重积分除以这个面积。
y=y1-y2=x^2-x-2
x的上下限分别为2和-1
X坐标=被积函数x在区域内二重积分/该面积
=Integrate[x (x^2 - x - 2), {x, -1, 2}]/Integrate[x^2 - x - 2, {x, -1, 2}]
=(-9/4)/(-9/2)
=1/2
Y坐标=Y坐标为y在区域内二重积分*0.5/该面积
=Integrate[(x^2 - x - 2)^2, {x, -1, 2}]/ Integrate[x^2 - x - 2, {x, -1, 2}]
=(81/10)/(-9/2)
=-9/5
应该是是1/2的Y坐标为y在区域内二重积分除以这个面积。
y=y1-y2=x^2-x-2
x的上下限分别为2和-1
X坐标=被积函数x在区域内二重积分/该面积
=Integrate[x (x^2 - x - 2), {x, -1, 2}]/Integrate[x^2 - x - 2, {x, -1, 2}]
=(-9/4)/(-9/2)
=1/2
Y坐标=Y坐标为y在区域内二重积分*0.5/该面积
=Integrate[(x^2 - x - 2)^2, {x, -1, 2}]/ Integrate[x^2 - x - 2, {x, -1, 2}]
=(81/10)/(-9/2)
=-9/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
X坐标为被积函数x在区域内二重积分除以这个面积,Y坐标为y在区域内二重积分除以这个面积。具体不多说。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我课本都丢了 哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询