【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD
【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由...
【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为______.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.
展开
1个回答
展开全部
解决问题∵AD是∠BAC的平分线,DE⊥AC,∠B=90°,
∴∠BAD=∠CAD,∠AED=∠B=90°,DB=DE.
在Rt△ABD和RtAED中,
,
∴Rt△ABD≌RtAED(HL),
∴AB=AE.
∵AB=CB,
∴AE=CB.
∵△CDE的周长为=CD+CE+DE,
∴△CDE的周长为=CD+DB+CE=BC+CE=AE+CE=AC.
在Rt△ABC中,由勾股定理,得
AC=2
.
故答案为:2
;
数学思考:
如图3,在CA的延长线上截取AE=AB,连接DE.
∵AD平分∠EAB,
∴∠EAD=∠BAD,
在△EAD和△BAD中,
,
△EAD≌△BAD(SAS).
∴∠AED=∠ABD,DB=DE,
∵AB=BC,∠ABC=90°
∴∠C=45°,∠ABD=90°,
∴∠AED=90°,
∴∠EDC=45°,
∴∠EDC=∠C,
∴DE=EC.
∴BD=EC.
∵EC=AE+AC,
∴BD=AE+AC
∴DB=AE+AC=AB+AC;
【类比猜想】BD=AB+AC.
理由:在CA的延长线上取一点E,使AE=AB,连接DE,
∵AD平分∠EAB,
∴∠EAD=∠BAD,
在△EAD和△BAD中,
∴∠BAD=∠CAD,∠AED=∠B=90°,DB=DE.
在Rt△ABD和RtAED中,
|
∴Rt△ABD≌RtAED(HL),
∴AB=AE.
∵AB=CB,
∴AE=CB.
∵△CDE的周长为=CD+CE+DE,
∴△CDE的周长为=CD+DB+CE=BC+CE=AE+CE=AC.
在Rt△ABC中,由勾股定理,得
AC=2
2 |
故答案为:2
2 |
数学思考:
如图3,在CA的延长线上截取AE=AB,连接DE.
∵AD平分∠EAB,
∴∠EAD=∠BAD,
在△EAD和△BAD中,
|
△EAD≌△BAD(SAS).
∴∠AED=∠ABD,DB=DE,
∵AB=BC,∠ABC=90°
∴∠C=45°,∠ABD=90°,
∴∠AED=90°,
∴∠EDC=45°,
∴∠EDC=∠C,
∴DE=EC.
∴BD=EC.
∵EC=AE+AC,
∴BD=AE+AC
∴DB=AE+AC=AB+AC;
【类比猜想】BD=AB+AC.
理由:在CA的延长线上取一点E,使AE=AB,连接DE,
∵AD平分∠EAB,
∴∠EAD=∠BAD,
在△EAD和△BAD中,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|