已知数列{an}满足a1=0,a2=1,当n∈N*时,an+2=an+1+an.求证:数列{an}的第4m+1(m∈N*)项能被3整除
已知数列{an}满足a1=0,a2=1,当n∈N*时,an+2=an+1+an.求证:数列{an}的第4m+1(m∈N*)项能被3整除....
已知数列{an}满足a1=0,a2=1,当n∈N*时,an+2=an+1+an.求证:数列{an}的第4m+1(m∈N*)项能被3整除.
展开
2个回答
展开全部
证明:(1)当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1)=(a2+a1)+2a2+a1=3a2+2a1=3+0=3,
即当m=1时,第4m+1项能被3整除,命题成立;
(2)假设当m=k时,a4k+1能被3整除,
则当m=k+1时,
a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2=2(a4k+2+a4k+1)+a4k+2=3a4k+2+2a4k+1.
显然,3a4k+2能被3整除,又由假设知a4k+1能被3整除,
∴3a4k+2+2a4k+1能被3整除.
即当m=k+1时,a4(k+1)+1也能被3整除.命题也成立.
由(1)和(2)知,对于任意n∈N*,数列{an}中的第4m+1(m∈N*)项能被3整除.
即当m=1时,第4m+1项能被3整除,命题成立;
(2)假设当m=k时,a4k+1能被3整除,
则当m=k+1时,
a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2=2(a4k+2+a4k+1)+a4k+2=3a4k+2+2a4k+1.
显然,3a4k+2能被3整除,又由假设知a4k+1能被3整除,
∴3a4k+2+2a4k+1能被3整除.
即当m=k+1时,a4(k+1)+1也能被3整除.命题也成立.
由(1)和(2)知,对于任意n∈N*,数列{an}中的第4m+1(m∈N*)项能被3整除.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询