初二数学三角形
如图,四边形ABCD由一个∠ACB=30°的Rt△ABC与等腰Rt△ACD组成,点E为斜边AC的中点,求∠BDE...
如图,四边形ABCD由一个∠ACB=30°的Rt△ABC与等腰Rt△ACD组成,点E为斜边AC的中点,求∠BDE
展开
展开全部
连接BE由题可得∠ACB=30度
由直角三角形斜边中点到三顶点距离相等,得AE=BE=EC
∵三角形DAC为等腰直角三角形
∴DC=DA,∠DEC=90度,∠DAE=90度,∠DAE=45度
∴∠EDA=45度
∴三角形AED为等腰直角三角形
∴AE=ED
∵AE=BE=DE
∴三角形BED为等腰三角形
∴∠EBD=∠EDB=1/2(180度-∠DEB)
∵AE=BE
∴三角形ABE为等腰三角形
∵三角形内角和为180度
∴∠CAB=60度 ∠EBA等于60度 三角形ABE为等边三角形 ∠AEB=60度
∴∠AEB=60度,∠AED=90度
∴∠DEB=90度+60度=150度 ∠EBD=∠EDB=1/2(180度-150度)=1/2(30度)=15度
由直角三角形斜边中点到三顶点距离相等,得AE=BE=EC
∵三角形DAC为等腰直角三角形
∴DC=DA,∠DEC=90度,∠DAE=90度,∠DAE=45度
∴∠EDA=45度
∴三角形AED为等腰直角三角形
∴AE=ED
∵AE=BE=DE
∴三角形BED为等腰三角形
∴∠EBD=∠EDB=1/2(180度-∠DEB)
∵AE=BE
∴三角形ABE为等腰三角形
∵三角形内角和为180度
∴∠CAB=60度 ∠EBA等于60度 三角形ABE为等边三角形 ∠AEB=60度
∴∠AEB=60度,∠AED=90度
∴∠DEB=90度+60度=150度 ∠EBD=∠EDB=1/2(180度-150度)=1/2(30度)=15度
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询