
高数定积分问题,求详细解释
1个回答
展开全部
∫cos2xcosxdx
=∫[1-2(sinx)^2]d(sinx)
=∫d(sinx)-2∫(sinx)^2d(sinx)
=sinx-(2/3)(sinx)^3+C
=(1/3)sinx[3-2(sinx)^2]+C
=(1/3)sinx(2+cos2x)+C
=(2/3)sinx+(1/3)sinxcos2x+C。
把(π/2,-π/2)代入得
=2/3-1/3-(-2/3+1/3)
=2/3
=∫[1-2(sinx)^2]d(sinx)
=∫d(sinx)-2∫(sinx)^2d(sinx)
=sinx-(2/3)(sinx)^3+C
=(1/3)sinx[3-2(sinx)^2]+C
=(1/3)sinx(2+cos2x)+C
=(2/3)sinx+(1/3)sinxcos2x+C。
把(π/2,-π/2)代入得
=2/3-1/3-(-2/3+1/3)
=2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询