求心形线r=a(1+cosθ)(a>0)绕极轴旋转所围成的立体的体积~

 我来答
999级吞天巨鲲
高粉答主

2019-07-07 · 每个回答都超有意思的
知道小有建树答主
回答量:53
采纳率:100%
帮助的人:2.4万
展开全部

θ=0,r=2a,θ=π,r=0,关于极轴对称。

1、极轴左边:

V=∫(0,2a)πy²dxx

=rcosθ=a(1+cosθ)cosθ

=a(cosθ+cos²θ)dx

=a(-sinθ-2sinθcosθ)dθy

=rsinθ=a(1+cosθ)sinθ

=a(sinθ+sinθcosθ),

代入:V=∫(0,2a)πy²dx

=π∫(π/2,0)a²(sinθ+sinθcosθ)²a(-sinθ-2sinθcosθ)dθ

=πa³∫(0,π/2)sin³θ(1+cosθ)²(1+2cosθ)dθ

=-πa³∫(0,π/2)(1-cos²θ)(1+cosθ)²(1+2cosθ)dcosθ

设t=cosθV=-πa³∫(1,0)(1-t²)(1+t)²(1+2t)dt

=πa³∫(0,1)(1-t²)(1+2t+t²)(1+2t)dt

=πa³∫(-1,1)(1-t²)(1+4t+5t²+2t³)dt

=πa³∫(0,1)(1+4t+4t²-2t³-5t^4-2t^5)dt

=πa³[t+2t²-t^4/2-t^5-t^6/3](0,1)=πa³(1+2-1/2-1-1/3)=πa³(2-5/6)=7πa³/6

2、极轴右边:

r=a(1+cosθ)a>0

r²=ar+acosθ

=ar+ax

对原式进行两边积分

原式=(π/2)[ax十(2/3)(1/4a)(a²十4ax)^(3/2)](-a/4,0)

= (π/2)(a²/4十(1/6a)(a³-0))

= (π/2)(a²/4十a²/6)

=πa(2/3)(1/4a)(a²十4ax)^(3/2)(-a/4,0)

=πa³/6

扩展资料

积分性质

1、线性性

积分是线性的。如果一个函数f 可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

2、保号性

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个I上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。

如果黎曼可积的非负函数f在I上的积分等于0,那么除了有限个点以外,f = 0。如果勒贝格可积的非负函数f在I上的积分等于0,那么f几乎处处为0。如果F中元素A的测度μ (A)等于0,那么任何可积函数在A上的积分等于0。 

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。

如果两个函数几乎处处相同,那么它们的积分相同。如果对F中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。

参考资料来源:百度百科-积分公式

姜心1998
高粉答主

2019-05-25 · 关注我不会让你失望
知道小有建树答主
回答量:377
采纳率:100%
帮助的人:10.9万
展开全部

θ=0,r=2a,θ=π,r=0,关于极轴对称。

1、极轴左边:

V=∫(0,2a)πy²dxx

=rcosθ=a(1+cosθ)cosθ

=a(cosθ+cos²θ)dx

=a(-sinθ-2sinθcosθ)dθy

=rsinθ=a(1+cosθ)sinθ

=a(sinθ+sinθcosθ),

代入:V=∫(0,2a)πy²dx

=π∫(π/2,0)a²(sinθ+sinθcosθ)²a(-sinθ-2sinθcosθ)dθ

=πa³∫(0,π/2)sin³θ(1+cosθ)²(1+2cosθ)dθ

=-πa³∫(0,π/2)(1-cos²θ)(1+cosθ)²(1+2cosθ)dcosθ

设t=cosθV=-πa³∫(1,0)(1-t²)(1+t)²(1+2t)dt

=πa³∫(0,1)(1-t²)(1+2t+t²)(1+2t)dt

=πa³∫(-1,1)(1-t²)(1+4t+5t²+2t³)dt

=πa³∫(0,1)(1+4t+4t²-2t³-5t^4-2t^5)dt

=πa³[t+2t²-t^4/2-t^5-t^6/3](0,1)=πa³(1+2-1/2-1-1/3)=πa³(2-5/6)=7πa³/6

2、极轴右边:

r=a(1+cosθ)a>0

r²=ar+acosθ

=ar+ax

对原式进行两边积分

原式=(π/2)[ax十(2/3)(1/4a)(a²十4ax)^(3/2)](-a/4,0)

= (π/2)(a²/4十(1/6a)(a³-0))

= (π/2)(a²/4十a²/6)

=πa(2/3)(1/4a)(a²十4ax)^(3/2)(-a/4,0)

=πa³/6

扩展资料

不定积分公式和种类

1、含有a+bx的积分公式主要有以下几类:

2、含有√(a+bx)的积分公式主要包含有以下几类:

3、公式种类

(1)不定积分

是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

(2)定积分

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。[2] 直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分记为:

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

参考资料来源:百度百科-积分公式

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
晴晴知识加油站
高能答主

2019-07-28 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661115

向TA提问 私信TA
展开全部

解题过程如下:

V=∫π(rsinθ)^2*rdθ

=π*∫r^3*(sinθ)^2dθ

=πa^3*∫(1+cosθ)^3*(sinθ)^2dθ 

=64πa^3*∫(cost)^8*(sint)^2dt

=64πa^3*[∫(cost)^8dt-∫(cost)^10dt]

=32π^2*a^3*7/256

=7π^2*a^3/8

扩展资料

性质:

在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。

平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。

在平面上,取一点O称为极点,从O出发的一射线OX称为‘极轴’。平面上任意一点P的位置,就可以用线段OP的长度γ和OP与OX所夹的角θ来确定。(γ、θ)称为点P的极坐标。

极坐标方程经常会表现出不同的对称形式,如果ρ(−θ)= ρ(θ),则曲线关于极点(0°/180°)对称,如果ρ(π-θ)= ρ(θ),则曲线关于极点(90°/270°)对称,如果ρ(θ−α)= ρ(θ),则曲线相当于从极点逆时针方向旋转α°。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2019-05-19 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:714万
展开全部

θ=0,r=2a,θ=π,r=0,关于极轴对称。

y轴右边,比较简单:

V=∫(0,2a)πy²dx

x=rcosθ=a(1+cosθ)cosθ=a(cosθ+cos²θ)

dx=a(-sinθ-2sinθcosθ)dθ

y=rsinθ=a(1+cosθ)sinθ=a(sinθ+sinθcosθ),代入:

V=∫(0,2a)πy²dx

=π∫(π/2,0)a²(sinθ+sinθcosθ)²a(-sinθ-2sinθcosθ)dθ

=πa³∫(0,π/2)sin³θ(1+cosθ)²(1+2cosθ)dθ

=-πa³∫(0,π/2)(1-cos²θ)(1+cosθ)²(1+2cosθ)dcosθ

设t=cosθ

V=-πa³∫(1,0)(1-t²)(1+t)²(1+2t)dt

=πa³∫(0,1)(1-t²)(1+2t+t²)(1+2t)dt

=πa³∫(-1,1)(1-t²)(1+4t+5t²+2t³)dt

=πa³∫(0,1)(1+4t+4t²-2t³-5t^4-2t^5)dt

=πa³[t+2t²-t^4/2-t^5-t^6/3](0,1)

=πa³(1+2-1/2-1-1/3)

=πa³(2-5/6)

=7πa³/6

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C

10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C

常用特殊角的函数值:

1、sin30°=1/2 

2、cos30°=(√3)/2 

3、sin45°=(√2)/2 

4、cos45°=(√2)/2 

5、sin60°=(√3)/2 

6、cos60°=1/2 

7、sin90°=1 

8、cos90°=0 

9、tan30°=(√3)/3 

10、tan45°=1 

11、tan90°不存在

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhangsonglin_c
高粉答主

2017-03-13 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.7万
采纳率:83%
帮助的人:6816万
展开全部

难题。

θ=0,r=2a,θ=π,r=0,关于极轴对称。

y轴右边,比较简单:

V=∫(0,2a)πy²dx

x=rcosθ=a(1+cosθ)cosθ=a(cosθ+cos²θ)

dx=a(-sinθ-2sinθcosθ)dθ

y=rsinθ=a(1+cosθ)sinθ=a(sinθ+sinθcosθ),代入:

V=∫(0,2a)πy²dx

=π∫(π/2,0)a²(sinθ+sinθcosθ)²a(-sinθ-2sinθcosθ)dθ

=πa³∫(0,π/2)sin³θ(1+cosθ)²(1+2cosθ)dθ

=-πa³∫(0,π/2)(1-cos²θ)(1+cosθ)²(1+2cosθ)dcosθ

设t=cosθ

V=-πa³∫(1,0)(1-t²)(1+t)²(1+2t)dt

=πa³∫(0,1)(1-t²)(1+2t+t²)(1+2t)dt

=πa³∫(-1,1)(1-t²)(1+4t+5t²+2t³)dt

=πa³∫(0,1)(1+4t+4t²-2t³-5t^4-2t^5)dt

=πa³[t+2t²-t^4/2-t^5-t^6/3](0,1)

=πa³(1+2-1/2-1-1/3)

=πa³(2-5/6)

=7πa³/6

y轴左边,比较难。

更多追问追答
追答

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式