如图1,已知点C为线段AB上一点,CB>CA,分别以线段AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=

如图1,已知点C为线段AB上一点,CB>CA,分别以线段AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于... 如图1,已知点C为线段AB上一点,CB>CA,分别以线段AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)说明AE=DB的理由.(2)如果∠ACD=60°,求∠AFB的度数.(3)将图1中的△ACD绕着点C顺时针旋转某个角度,到如图2的位置,如果∠ACD=α,那么∠AFB与α有何数量关系(用含α的代数式表示)?试说明理由. 展开
 我来答
搞残花残130
推荐于2018-03-29 · 超过63用户采纳过TA的回答
知道答主
回答量:109
采纳率:100%
帮助的人:116万
展开全部
(1)证明:∵∠ACD=∠BCE(已知),
∴∠ACD+∠DCE=∠BCE+∠ECD(等式性质),
即∠ACE=∠BCD.
在△ACE与△DCB中,
AC=DC(已知)
∠ACE=∠DCB
CE=CB

∴△ACE≌△DCB(SAS),
∴AE=DB(全等三角形对应边相等);

(2)解:∵△ACE≌△DCB,
∴∠CAE=∠CDB(全等三角形对应角相等).
∵∠ADF=∠ADC+∠CDB(等式性质),
∴∠ADF=∠ADC+∠CAE(等量代换),
又∵∠AFB=∠FAD+∠ADF(三角形的一个外角等于与它不相邻的两个内角的和),
∴∠AFB=∠FAD+∠ADC+∠CAE(等量代换),
∴∠AFB=∠DAC+∠ADC(等式性质)
又∵∠DAC+∠ADC+∠ACD=180°(三角形内角和等于180°),
∴∠DAC+∠ADC=180°-∠ACD(等式性质),
∴∠AFB=180°-∠ACD(等量代换),
∵∠ACD=60°(已知),
∴∠AFB=120°(等式性质);

(3)解:∠AFB与α的数量关系为:∠AFB=180°-α,理由如下:
∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB.
在△ACE和△DCB中,
AC=DC
∠ACE=∠DCB
CE=CB

∴△ACE≌△DCB(SAS),
∴∠CAE=∠CDB,∠AEC=∠DBC,
∴∠EFB=∠ECB,
∴∠AFB=180°-∠EFB,
∴∠AFB=180°-∠ECB,
因为∠ACD=∠BCE,∠ACD=α(已知),
所以∠AFB=180°-α.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式