根号下a^2+x^2的原函数

根号下a^2+x^2的原函数... 根号下a^2+x^2的原函数 展开
 我来答
帐号已注销
2021-08-19 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

设x=asint

则dx=dasint=acostdt

a^2-x^2

=a^2-a^2sint^2

=a^2cost^2

∫√(a^2-x^2)dx

=∫acost*acostdt

=a^2/4*(sin2t+2t)

将x=asint代入

∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2

原函数定理

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数。

例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

旅游小达人Ky
高粉答主

2021-01-05 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:39.9万
展开全部

设x=asint

则dx=dasint=acostdt

a^2-x^2

=a^2-a^2sint^2

=a^2cost^2

∫√(a^2-x^2)dx

=∫acost*acostdt

=a^2∫cost^2dt

=a^2∫(cos2t+1)/2dt

=a^2/4∫(cos2t+1)d2t

=a^2/4*(sin2t+2t)

将x=asint代入

∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2

扩展资料

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wyzxcjz1
2017-04-12 · TA获得超过5355个赞
知道大有可为答主
回答量:1514
采纳率:100%
帮助的人:300万
展开全部
根号下a^2+x^2的原函数
I=∫√(a^2+x^2)dx
=x√(a^2+x^2)-∫xd√(a^2+x^2)
=x√(a^2+x^2)-∫[x^2/√(a^2+x^2)]dx
=x√(a^2+x^2)-∫ √(a^2+x^2)dx+∫a^2dx/√(a^2+x^2)
则:2I=x√(a^2+x^2)+a^2∫[1/√(a^2+x^2)]dx
=x√(a^2+x^2)+a arcsin(x/a)+C1
I=x√(a^2+x^2)+a arcsin(x/a)+C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wufan吴凡123
2019-08-07 · TA获得超过273个赞
知道答主
回答量:5
采纳率:0%
帮助的人:4382
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
红红火火嘿嘿哈哈
2017-09-15
知道答主
回答量:1
采纳率:0%
帮助的人:957
展开全部
他答案错了答案心应该是 x二分之一倍的(x√(a^2+x^2)+a^2ln(x+√(a^2+x^2))+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式