泰勒求极限 答案是3/2,可是为什么啊,求学霸指点。 必采纳!谢谢!
let
y=1/x
y->0
(1+3y^2)^(1/3) ~ 1
(1-2y)^(1/4) ~ 1- (1/2)y
(1+3y^2)^(1/3) - (1-2y)^(1/4) ~ (1/2)y
-------------
lim(x->+∞) [ (x^3+3x)^(1/3) - (x^4-2x^3)^(1/4) ]
=lim(x->+∞) [ x(1+3/x^2)^(1/3) - x(1-2/x)^(1/4) ]
=lim(y->0) [ (1+3y^2)^(1/3) - (1-2y)^(1/4) ] /y
=lim(y->0) (1/2)y/y
=1/2
请查一下题目!
-------
如果是
lim(x->+∞) [ (x^3+3x^2)^(1/3) - (x^4-2x^3)^(1/4) ]
y->0
(1+3y)^(1/3) ~ 1 +y
(1-2y)^(1/4) ~ 1- (1/2)y
(1+3y^2)^(1/3) - (1-2y)^(1/4) ~ (3/2)y
---------
lim(x->+∞) [ (x^3+3x^2)^(1/3) - (x^4-2x^3)^(1/4) ]
=lim(x->+∞) [ x(1+3/x)^(1/3) - x(1-2/x)^(1/4) ]
=lim(y->0) [ (1+3y)^(1/3) - (1-2y)^(1/4) ] /y
=lim(y->0) (3/2)y/y
=3/2