2个回答
2017-10-07
展开全部
∫(上限是1下限是-1)[(x^2+e^x^2)(f(x)-f(-x)]dx=∫(-1,1)(x^2+e^x^2)f(x)dx-∫(-1,1)(x^2+e^x^2)f(-x)dx 对于∫(-1,1)(x^2+e^x^2)f(-x)dx,令-x=t ∫(-1,1)(x^2+e^x^2)f(-x)dx=-∫(1,-1)(t^2+e^t^2)f(t)dt=∫(-1,1)(t^2+e^t^2)f(t)dt=∫(-1,1)(x^2+e^x^2)f(x)dx (x和t地位一样) 所以原式=∫(-1,1)(x^2+e^x^2)f(x)dx-∫(-1,1)(x^2+e^x^2)f(x)dx=0
追问
手写
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询