一道几何题,各位帮帮忙 如图,在正方形ABCD中,Q在CD上,且DQ=QC,P在BC上,且AP=CD+CP,求证:AQ平分∠DAP... 如图,在正方形ABCD中,Q在CD上,且DQ=QC,P在BC上,且AP=CD+CP,求证:AQ平分∠DAP 展开 2个回答 #合辑# 面试问优缺点怎么回答最加分? 悦耳的胡萝卜eCb2e 2010-08-21 · TA获得超过6808个赞 知道大有可为答主 回答量:1880 采纳率:0% 帮助的人:2054万 我也去答题访问个人页 关注 展开全部 延长AQ至BC延长线,交于M点,连接PQ,AD‖BC,∠PMQ=∠DAQ,∠ADQ=∠MCQ=RT∠,DQ=QC,△ADQ≌△MCQ,CM=AD=CD,又AP=CD+CP,所以PM=CP+CM=CP+CD,所以AP=PM,∠PAQ=∠PMQ,又AD‖BC,∠PMQ=∠DAQ,所以∠PAQ=∠DAQ,AQ平分∠DAP. 本回答由提问者推荐 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 希卡利yyy 2010-08-22 知道答主 回答量:6 采纳率:0% 帮助的人:0 我也去答题访问个人页 关注 展开全部 PC+QC大余DQ 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: