求解这两题详细步骤!谢谢
2017-10-07
展开全部
lim_(x->0) ( (sin αx)^2 - (sinβx)^2 )/(x sinx)
=lim_(x->0) ( (αx)^2 - (βx)^2 )/x^2
=α^2 -β^2
let t=1-x
lim_(x->1) (1-x) tan(πx/2)
=lim_(t->0) t tan(π(1-t)/2)
=lim_(t->0) t sin(π(1-t)/2)/cos(π(1-t)/2)
=lim_(t->0) t /cos(π(1-t)/2)
=-lim_(t->0) 1 /( sin(π(1-t)/2) *(-π/2) )
=2/π
=lim_(x->0) ( (αx)^2 - (βx)^2 )/x^2
=α^2 -β^2
let t=1-x
lim_(x->1) (1-x) tan(πx/2)
=lim_(t->0) t tan(π(1-t)/2)
=lim_(t->0) t sin(π(1-t)/2)/cos(π(1-t)/2)
=lim_(t->0) t /cos(π(1-t)/2)
=-lim_(t->0) 1 /( sin(π(1-t)/2) *(-π/2) )
=2/π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询