求解第5题和第6题
1个回答
展开全部
(5)原式=lim(x->0) {[1+(a^x+b^x+c^x-3)/3]^[3/(a^x+b^x+c^x-3)]}^[(a^x+b^x+c^x-3)/3x]
=e^lim(x->0) [(a^x+b^x+c^x-3)/3x]
=e^lim(x->0) (lna*a^x+lnb*b^x+lnc*c^x)/3
=e^[ln(abc)/3]
=(abc)^(1/3)
(6)原式=lim(x->π/2) {(1+sinx-1)^[1/(sinx-1)]}^[tanx(sinx-1)]
=e^lim(x->π/2) [tanx(sinx-1)]
=e^lim(x->π/2) (sin^2x-sinx)/cosx
=e^lim(x->π/2) (2sinxcosx-cosx)/(-sinx)
=e^0
=1
=e^lim(x->0) [(a^x+b^x+c^x-3)/3x]
=e^lim(x->0) (lna*a^x+lnb*b^x+lnc*c^x)/3
=e^[ln(abc)/3]
=(abc)^(1/3)
(6)原式=lim(x->π/2) {(1+sinx-1)^[1/(sinx-1)]}^[tanx(sinx-1)]
=e^lim(x->π/2) [tanx(sinx-1)]
=e^lim(x->π/2) (sin^2x-sinx)/cosx
=e^lim(x->π/2) (2sinxcosx-cosx)/(-sinx)
=e^0
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询