已知abcd满足a+b=c+d,a^3+b^3=c^3+d^3,求证:a^2007+b^2007=c^2007+d^2007

别用归纳法谢谢,过程详细些,快一点,急用... 别用归纳法
谢谢,过程详细些,快一点,急用
展开
zqs626290
2010-08-21 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:6270万
展开全部
因a+b=c+d.结合a³+b³=c³+d³.===>(a+b)(a²-ab+b²)=(c+d)(c²-cd+d²)==>(a+b)[(a+b)²-3ab]=(c+d)[(c+d)²-3cd].===>(a+b)³-3ab(a+b)=(c+d)³-3cd(c+d).===>-3ab(a+b)=-3cd(c+d)=-3cd(a+b).===>(a+b)(ab-cd)=0.(一)当a+b=0时,a.b是互为相反数,其奇次方也是互为相反数,故a^2007+b^2007=0,同理,c^2007+d^2007=0.故所证的式子成立。(二)若a+b=c+d≠0,则必有ab-cd=0.===>ab=cd.可设a+b=c+d=t.(t≠0)==>b=t-a,d=t-c.===>ab=a(t-a)=cd=c(t-c).===>ta-a²=tc-c²===>(a-c)[t-(a+c)]=0.(1)若a-c=0.===>a=c,此时,b=d.显然此时所证式子成立。(2)若a-c≠0,则必有t-(a+c)=0.===>t=a+c.又由所设t=a+b.===>a+c=a+b.===>b=c.故a=d.显然,此时所证的式子成立。综上可知,原式子成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式