第八题高数
1个回答
展开全部
令x=tanα,则:dx=[1/(cosα)^2]dα,
你好,请采纳!
sinα=√{(sinα)^2/[(cosα)^2+(sinα)^2]}=√{(tanα)^2/[1+(tanα)^2]}
=x/√(1+x^2),
√(1+x^4)=√[1+(tanα)^4]=√[(cosα)^4+(sinα)^4]/(cosα)^2
=√{[(cosα)^2+(sinα)^2]^2-2(cosα)^2(sinα)^2}/(cosα)^2
=√[1-(1/2)(sin2α)^2]/(cosα)^2=(1/√2)√[2-(sin2α)^2]/(cosα)^2,
1-x^4=1-(tanα)^4=[(cosα)^4-(sinα)^4]/(cosα)^4
=[(cosα)^2-(sinα)^2]/(cosα)^4=cos2α/(cosα)^4。
∴√(1+x^4)/(1-x^4)=(1/√2)(cosα)^2√[2-(sin2α)^2]/cos2α。
你好,请采纳!
sinα=√{(sinα)^2/[(cosα)^2+(sinα)^2]}=√{(tanα)^2/[1+(tanα)^2]}
=x/√(1+x^2),
√(1+x^4)=√[1+(tanα)^4]=√[(cosα)^4+(sinα)^4]/(cosα)^2
=√{[(cosα)^2+(sinα)^2]^2-2(cosα)^2(sinα)^2}/(cosα)^2
=√[1-(1/2)(sin2α)^2]/(cosα)^2=(1/√2)√[2-(sin2α)^2]/(cosα)^2,
1-x^4=1-(tanα)^4=[(cosα)^4-(sinα)^4]/(cosα)^4
=[(cosα)^2-(sinα)^2]/(cosα)^4=cos2α/(cosα)^4。
∴√(1+x^4)/(1-x^4)=(1/√2)(cosα)^2√[2-(sin2α)^2]/cos2α。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询