无穷和无穷类型的反常积分是发散的吗?

无穷和无穷类型的反常积分是发散的吗?... 无穷和无穷类型的反常积分是发散的吗? 展开
 我来答
bill8341
高粉答主

2017-12-16 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3580万
展开全部
一般地,我们有下列定义
设函数f(x)在区间[a,+∞)上连续,取t>a,如果极限 当t→+∞时lim∫f(x)dx (t为上限,a为下限)存在,就称此极限值为函数f(x)在无穷区间[a,+∞)上的广义积分.记作∫f(x)dx(+∞为上限,a为下限)
即 ∫f(x)dx(+∞为上限,a为下限)=lim(t→+∞)∫f(x)dx(t为上限,a为下限) ( 6.24 ) 这时我们说广义积分∫f(x)dx(+∞为上限,a为下限) 存在或收敛;
如果 不存在,就说函数f(x)在无穷区间[a,+∞)的反常积分没有意义或发散
类似的,可以定义 在区间(-∞,b]及取t<b上的广义积分∫f(x)dx(b为上限,-∞为下限).
( 6.25 )
其中∫f(x)dx(b上限,-∞为下限)=lim(t→-∞)f(x)dx (b上限,t下限) ( 6.26 )
对于广义积分 ,其收敛的充要条件是: 与 都收敛.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式