请问第四题怎么做,高数
展开全部
首先,你在证明时,积分上下限是不正确的。
令a-x=t 则 dx=-dt
积分区间 x=a, t=0;x=0, t=a
则∫(0,a)f(a-x)dx
=∫(a, 0)f(t)d(-t)
=-∫(a, 0)f(t)d(t)
=∫(0, a)f(t)d(t)
~~~~~~~~~~~~~~
∫(0, π/4)(1-sin2x)/(1+sin2x)dx
=∫(0, π/4)(1-sin[2(π/4-x)]/(1+sin[2(π/4-x)])dx
=∫(0, π/4)(1-cos2x)/(1+cos2x)dx
=∫(0, π/4)2(sinx)^2/2(cosx)^2dx
=∫(0, π/4)(tanx)^2dx
=∫(0, π/4)[(secx)^2-1]dx
=tanx-x|(0, π/4)
=1-π/4
令a-x=t 则 dx=-dt
积分区间 x=a, t=0;x=0, t=a
则∫(0,a)f(a-x)dx
=∫(a, 0)f(t)d(-t)
=-∫(a, 0)f(t)d(t)
=∫(0, a)f(t)d(t)
~~~~~~~~~~~~~~
∫(0, π/4)(1-sin2x)/(1+sin2x)dx
=∫(0, π/4)(1-sin[2(π/4-x)]/(1+sin[2(π/4-x)])dx
=∫(0, π/4)(1-cos2x)/(1+cos2x)dx
=∫(0, π/4)2(sinx)^2/2(cosx)^2dx
=∫(0, π/4)(tanx)^2dx
=∫(0, π/4)[(secx)^2-1]dx
=tanx-x|(0, π/4)
=1-π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询