
1个回答
展开全部
y=(2x²-2+2)/(x+1)
=2(x+1)(x-1)/(x+1)+2/(x+1)
=2(x-1)+2/(x+1)
=2(x+1)+2/(x+1)-2
x>-1
x+1>0
所以由均值不等式
2(x+1)+2/(x+1)>=2√[2(x+1)*2/(x+1)]=4
所以y>=2-2=0
所以最小值=0
=2(x+1)(x-1)/(x+1)+2/(x+1)
=2(x-1)+2/(x+1)
=2(x+1)+2/(x+1)-2
x>-1
x+1>0
所以由均值不等式
2(x+1)+2/(x+1)>=2√[2(x+1)*2/(x+1)]=4
所以y>=2-2=0
所以最小值=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询