线性方程组中的特解是怎么求得的?
特解是由该矩阵经过行列变换后变为标准式,那么这个标准矩阵和原来的矩阵所代表的方程组是同解的。所以就由标准矩阵列出同解方程组,然后得出该方程组特解。
具体解法为:
(1)将原增广矩阵行列变换为标准矩阵。
(2)根据标准行列式写出同解方程组。
(3)按列解出方程。
(4)得出特解。
线性方程组的通解由特解和一般解合成。一般解是AX=0求出来的,特解是由AX=B求出来。形式为X=η0+k*η。
扩展资料:
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于 ,即可写出含n-r个参数的通解。非齐次线性方程组
有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩) [2]
解的结构:非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)
参考资料:非齐次线性方程组_百度百科
2024-10-13 广告
通解中的任意一个,就是特解。如果通解已经求出,将参数用任意一个数代入,可以求得一个特解。
通解没有求出,将(未知数-方程数(或秩))个数的未知数,任意指定一个数,求出其他未知数的解,就能得到一个一组特解。
本题,4未知数,3方程,4-3=1,可以令x1=0
代入得:
-5x2+2x3+3x4=11
x2-4x3-2x4=-6
-9x2+3x4=15
三个方程,三个未知数,一般都可以求出来。
简介
xj表未知量,aij称 系数,bi称 常数项。
称为 系数矩阵和 增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非 零解。若 常数项均为0,则称为 齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r消元法求解。
当 非齐次线性方程组有解时,解唯一的 充要条件是对应的齐次线性方程组只有 零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的 导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。
克莱姆法则(见 行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一 齐次方程组的解集均构成n维空间的一个 子空间。
线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定 约束条件的线性方程组问题。
1.将增广矩阵化为最简阶梯阵
化最简阶梯阵的方法:
(1)首元素为1——用1将下面化0
(2)首元素非0非1——直接用首元素将下面的行化0
(3)首元素非0,下方有0元素——非0行调换至第一行
只能初等行变换,每行首元素应为正1,与1同列的其余元素化0
2.先判断,再求解。
矩阵的秩=增广矩阵的秩 与 未知量个数比较
<有无穷多解
=有唯一解
>无解
自由未知量个数:未知量个数-增广矩阵的秩
自由未知量选取:看最简阶梯阵中系数矩阵,系数非1的未知量(注意-1也非1)
3.根据最简阶梯阵写同解方程组
再写一般解
4.自由未知量代值
自由未知量任意取,只需符合方程组
通常都取0,方便计算
检验特解是否正确的方法:将特解代入方程组
2023-05-06
线性代数方程组通解与特解不会求?来试试我能不能教会你