x趋于无穷大的极限能用“泰勒公式”吗?
1个回答
展开全部
不能。
泰勒公式的皮亚诺余项是o(x^n)
x->∞时余项不是x^n的高阶无穷小,而是高阶无穷大,显然不再适用。
x趋于无穷时 x+x的正弦 再整体比x 极限是1,当x趋于无穷时 ,1/x 极限是0,而sinx显然是有界量,利用无穷小量乘有界量仍是无穷小量,因此在x趋于无穷时 (sinx)/x 极限是0而不是1,只有当x趋于0时 (sinx)/x 极限才是1。
使用泰勒公式,需要x非常小,于是x的高次项就更小了,小到可以忽略,才可以使用泰勒公式。所以如果要用,可以做一个变换u=1/x,x趋向于无穷,u趋向于0。
泰勒公式的皮亚诺余项是o(x^n) ,x->∞时余项不是x^n的高阶无穷小,而是高阶无穷大。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询