如图是抛物线y^2=2px的焦点弦性质 那么当抛物线是x^2=2py时这些结论要如何变化?
3个回答
展开全部
①过抛物线y^2=2px的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2).则
|AB|=x1+x2+p.
证明:设抛物线的准线为L,从点A、B分别作L的垂线垂足是C、D.由于L的方程是x=-p/2,所以
|AC|=x1+p/2,|BD|=x2+p/2,
根据抛物线的定义有:|AF|=|AC|,|BF|=|BD|,
所以:|AB|=|AF|+|BF|=x1+x2+p.
类似有:
②过抛物线x^2=2py的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2).则
|AB|=y1+y2+p.
③过抛物线y^2=-2px的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2).则
|AB|=-x1-x2+p.
④过抛物线x^2=-2py的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2).则
|AB|=-y1-y2+p.
除了以上四点之外,还有:
1、以焦点弦为直径的圆与准线相切(用抛物线的定义与梯形的中位线定理结合证明)
2、1/|AF|+1/|BF|=2/p(p为焦点到准线的距离,下同)
3、当且仅当焦点弦与抛物线的轴垂直(此时的焦点弦称为“通径”)时,焦点弦的长度取得最小值2p.
4、如果焦点弦的两个端点是A、B,那么向量OA与向量OB的数量积是-0.75p^2
A(x1,y1),B(x2,y2).则
|AB|=x1+x2+p.
证明:设抛物线的准线为L,从点A、B分别作L的垂线垂足是C、D.由于L的方程是x=-p/2,所以
|AC|=x1+p/2,|BD|=x2+p/2,
根据抛物线的定义有:|AF|=|AC|,|BF|=|BD|,
所以:|AB|=|AF|+|BF|=x1+x2+p.
类似有:
②过抛物线x^2=2py的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2).则
|AB|=y1+y2+p.
③过抛物线y^2=-2px的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2).则
|AB|=-x1-x2+p.
④过抛物线x^2=-2py的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2).则
|AB|=-y1-y2+p.
除了以上四点之外,还有:
1、以焦点弦为直径的圆与准线相切(用抛物线的定义与梯形的中位线定理结合证明)
2、1/|AF|+1/|BF|=2/p(p为焦点到准线的距离,下同)
3、当且仅当焦点弦与抛物线的轴垂直(此时的焦点弦称为“通径”)时,焦点弦的长度取得最小值2p.
4、如果焦点弦的两个端点是A、B,那么向量OA与向量OB的数量积是-0.75p^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x1,x2变成y1,y2
y1,y2变成x1,x2
其他的跟以前一样
y1,y2变成x1,x2
其他的跟以前一样
追答
三四五六跟以前一样,一二交换x和y
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
怎么说呢,这个问题,你们外行的看不懂很正常,在我们内行看来也是一脸懵逼怎么说呢,这个问题,你们外行的看不懂很正常,在我们内行看来也是一脸懵逼
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询