等比数列{an}的前n 项和为Sn,已知S1,S3,S2成等差数列(Ⅰ)求{an}的公比q;(Ⅱ)求a1-a3=3,求数列{a
等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列(Ⅰ)求{an}的公比q;(Ⅱ)求a1-a3=3,求数列{an}的通项公式(Ⅲ)数列{nan}的前n项的和...
等比数列{an}的前n 项和为Sn,已知S1,S3,S2成等差数列(Ⅰ)求{an}的公比q;(Ⅱ)求a1-a3=3,求数列{an}的通项公式(Ⅲ)数列{nan}的前n项的和Tn…
展开
1个回答
展开全部
(Ⅰ)由题意S1,S3,S2成等差数列,可得2(a1+a2+a3)=a1+(a1+a2),
即 2a3 +a2=0,∴等比数列{an}的公比q=
=-
.
(Ⅱ)∵a1-a3=3,∴a1?a1q2=3,再由q=-
可得 a1=4,an =4(?
)n?1.
(Ⅲ)数列{nan}的前n项的和Tn =a1+2a2+3a3+…+nan =4[1+2(-
)+3(?
)2+…+n(?
)n?1,
-
Tn =4[(-
)+2(?
)2+3(?
)3+…+n (?
)n],
∴
Tn =4[1+(-
)+(?
)2+(?
)3+…+(?
)n?1-n (?
)n],
∴Tn =
×[
即 2a3 +a2=0,∴等比数列{an}的公比q=
a3 |
a2 |
1 |
2 |
(Ⅱ)∵a1-a3=3,∴a1?a1q2=3,再由q=-
1 |
2 |
1 |
2 |
(Ⅲ)数列{nan}的前n项的和Tn =a1+2a2+3a3+…+nan =4[1+2(-
1 |
2 |
1 |
2 |
1 |
2 |
-
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴
3 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴Tn =
8 |
3 |
1?(?
| ||
1?(?
|