高数求助 如何从第一步得到第二步的,谢谢
2个回答
展开全部
let
x=-u
dx=-du
u=-π/4, x=π/4
u=π/4, x=-π/4
(1/2)∫(-π/4->π/4) [1/(2^u +1) ] (cos2u)^4 du
=(1/2)∫(π/4->-π/4) [1/(2^(-x) +1) ] (cos2x)^4 [-dx]
=(1/2)∫(-π/4->π/4) [1/(2^(-x) +1) ] (cos2x)^4 dx
=(1/2)∫(-π/4->π/4) [ 2^x/(2^(x) +1) ] (cos2x)^4 dx
x=-u
dx=-du
u=-π/4, x=π/4
u=π/4, x=-π/4
(1/2)∫(-π/4->π/4) [1/(2^u +1) ] (cos2u)^4 du
=(1/2)∫(π/4->-π/4) [1/(2^(-x) +1) ] (cos2x)^4 [-dx]
=(1/2)∫(-π/4->π/4) [1/(2^(-x) +1) ] (cos2x)^4 dx
=(1/2)∫(-π/4->π/4) [ 2^x/(2^(x) +1) ] (cos2x)^4 dx
更多追问追答
追问
然后怎么出来的1/4呢?
追答
I
=(1/2)∫(-π/4->π/4) [1/(2^x +1) ] (cos2x)^4 du
=(1/2)∫(-π/4->π/4) [ 2^x/(2^(x) +1) ] (cos2x)^4 dx
2I
=(1/2)∫(-π/4->π/4) [1/(2^x +1) ] (cos2x)^4 du
+(1/2)∫(-π/4->π/4) [ 2^x/(2^(x) +1) ] (cos2x)^4 dx
=(1/2)∫(-π/4->π/4) [ (1+2^x)/(2^x +1) ] (cos2x)^4 du
I=(1/4)∫(-π/4->π/4) [ (1+2^x)/(2^x +1) ] (cos2x)^4 du
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分布积分换元法。
追问
可以写一下详细过程嘛?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询