高数中值定理

 我来答
卑微小黄同学
2018-12-15 · 生为冰山就该淡淡地爱海流,爱风和其他冰山
卑微小黄同学
采纳数:707 获赞数:1908

向TA提问 私信TA
展开全部
令g(x)=f(x)-x,g(0)=0,g(1)=-1,g(1/2)=1/2,由介值定理(这里也可以是零点定理)可知在x=1/2到1之间有一点可使得g(x)等于0,再由罗尔定理易知:在(0,1)上有一点可使得g'(x)=0,那么g'(x)=f'(x)-1=0,即:f'(x)=1
惠君0hO
2018-12-15 · TA获得超过2210个赞
知道大有可为答主
回答量:4264
采纳率:80%
帮助的人:507万
展开全部
取区间[a,b]的中点(a+b)/2 根据拉格朗日中值定理,存在ξ∈(a,(a+b)/2),使得 f'(ξ)=[f((a+b)/2)-f(a)]/[(a+b)/2-a]=2[f((a+b)/2)-f(a)]/(b-a) 令g(x)=x^2,则根据柯西中值定理,存在η∈((a+b)/2,b),使得 f'(η)/g'(η)=[f(b)-f((a+b)/2)]/[g(b)-g((a+b)/2)] f'(η)/2η=[f(b)-f((a+b)/2)]/[b^2-(a+b)^2/4]=4[f(b)-f((a+b)/2)]/(3b+a)(b-a) 所以f'(ξ)/(3b+a)+f'(η)/4η =2[f((a+b)/2)-f(a)]/(b-a)(3b+a)+2[f(b)-f((a+b)/2)]/(3b+a)(b-a) =2[f(b)-f(a)]/(b-a)(3b+a) =0
追问
我发的题目怎么写
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式