求微分 数学?
展开全部
x=ln(1+t^2)
dx = [2t/(1+t^2)] dx
dx| t=1 = dx
y=arctant
dy = dt/(1+t^2)
dy| t=1 = (1/2)dt
//
e^(x+y) -xy =1
x0=0
e^(y0) =1
y0=0
e^(x+y) -xy =1
(dx+dy) e^(x+y) - ( ydx +xdy) =0
(dx+dy) e^(0+0) - 0 =0
dx+dy =0
dx=-dy
dx = [2t/(1+t^2)] dx
dx| t=1 = dx
y=arctant
dy = dt/(1+t^2)
dy| t=1 = (1/2)dt
//
e^(x+y) -xy =1
x0=0
e^(y0) =1
y0=0
e^(x+y) -xy =1
(dx+dy) e^(x+y) - ( ydx +xdy) =0
(dx+dy) e^(0+0) - 0 =0
dx+dy =0
dx=-dy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询