f(x)=x-3/2 ³√x² 求函数的单调区间与极值。如图 修

 我来答
买昭懿007
2018-12-16 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160771
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部
f(x)=x-3/2 ³√x²
求导得:
f ′(x) = 1 - 3/2*2/3* 1/ ³√x = 1` - 1/ ³√x
当x<0时, f ′(x) 恒大于0,函数单调增;
当x=0时,导数不存在;
当0<x<1时,f ′(x) <0,函数单调减;
当x>1时,f ′(x) >0,函数单调增。
x=0时,极大值f(0)=0
当x=1时,极小值f(1)=-1/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式