用初中知识解决数学问题:题目看下图。

(用初中知识,初一初二的)(不要cos,sin)(两问都要!)... (用初中知识,初一初二的)
(不要cos,sin)
(两问都要!)
展开
 我来答
匿名用户
2019-08-06
展开全部

(1)、如图所示,因为在等腰直角△ABE和等腰直角△ACF中有AB=AE,AC=AE,

所以可将△ABD绕点A旋转至△AEH处,将△ACD绕点A旋转至△AFI处。

因为△ABD≌△AEH,△ACD≌△AFI,点D为BC中点,所以AD=AH=AI,EH=BD=CD=FI,

∠ADB=∠H,∠ADC=∠I,∠BAD=∠EAH,∠CAD=∠FAI,

有∠DAH=∠BAD+∠BAH=∠EAH+∠BAH=90°,∠DAI=∠CAD+∠CAI=∠FAI+∠CAI=90°,

可知点H、A、I在同一直线上,且由∠H+∠I=∠ADB+∠ADC=180°,可知EH∥FI,

因为EH平行且等于FI,所以四边形EFIH为平行四边形,有EF∥HI,

又因为∠DAH=∠DAI=90°,即DG⊥HI,所以DG⊥EF,且EF=HI=AH+AI=2AD。

(2)、如图所示,因为在等腰直角△ABE和等腰直角△ACF中有AB=AE,AC=AE,

所以可将△AEG绕点A旋转至△ABH处,将△AFG绕点A旋转至△ACI处。

因为△AEG≌△ABH,△AFG≌△ACI,DG⊥EF,所以AG=AH=AI,EG=BH,FG=CI,

∠H=∠AGE=∠AGF=∠I=90°,∠EAG=∠BAH,∠FAG=∠CAI,

有∠GAH=∠EAG+∠EAH=∠BAH+∠EAH=90°,∠GAI=∠FAG+∠EAI=∠CAI+∠EAI=90°,

可知点H、A、I在同一直线上,在直角梯形BCIH中因为AH=AI,

且∠GAH=∠GAI=90°,即AD∥BH∥CI,所以AD为直角梯形BCIH的中位线,

所以点D为BC中点,且由梯形中位线性质可知EF=EG+FG=BH+CI=2AD。

百度网友f991fab
2019-08-06 · TA获得超过2万个赞
知道大有可为答主
回答量:1.4万
采纳率:79%
帮助的人:1593万
展开全部

如图:

延长AD到M,使AD=DM,连BM、CM

得: ABMC为平行四边形。CM=AB=AE

又:<EAF+<BAC=360-2*90=180=<BAC+<ACM

<EAF=<ACM

AC=AF

所以:三角形EAF全等于MCA (SAS)

<DAC=<AFG

<DAC+<FAG=180-90=90 

有: <AFG+<FAG=90,

<AGF=90

即:DG垂直EF

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
心在天边418
2019-08-06 · TA获得超过2409个赞
知道小有建树答主
回答量:2314
采纳率:73%
帮助的人:141万
展开全部
你好,很高兴地解答你的问题。
9.【解析】:
∵延长AD到G,
又∵使DG=AD,
∵连接BG,CG。
又∵AD是BC的中线,
∴BD=CD,
∴四边形ABGC是平行四边形。
∴BG=AC,
∴∠ABG+∠BAC=180°。
∵△ABE和△ACF是等腰直角三角形,
∴AB=AE,
∴AC=AF,
∴∠BAE
=∠CAE
=90°,
∴∠BAC+∠EAF=180°,
∴BG=AF,
∴∠ABG=∠EAF,
∴△ABG≌△EAF(SAS),
∴AG=EF,
∵AD=DG,
∴即
∴AG=2AD,
∴EF=2AD。
追答
望采纳
采纳最佳答案
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
AQ西南风
高粉答主

2019-08-06 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:1.6万
采纳率:94%
帮助的人:2954万
展开全部

二倍中线构造平行四边形

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
欢欢喜喜q
高粉答主

2019-08-06 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:9万
采纳率:87%
帮助的人:1.1亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式