2个回答
展开全部
a1=1
an-a(n+1)=2a(n+1).an
(1)
an-a(n+1)=2a(n+1).an
1/a(n+1) - 1/an = 2
=> { 1/an } 是等差数列, d=2
1/an - 1/a1= 2(n-1)
1/an = 2n-1
an = 1/(2n-1)
(2)
bn
= an.a(n+1)
= 1/[(2n-1)(2n+1)]
=(1/2)[1/(2n-1) -1/(2n+1)]
Tn
=b1+b2+...+bn
=(1/2)[1 -1/(2n+1)]
<1/2
an-a(n+1)=2a(n+1).an
(1)
an-a(n+1)=2a(n+1).an
1/a(n+1) - 1/an = 2
=> { 1/an } 是等差数列, d=2
1/an - 1/a1= 2(n-1)
1/an = 2n-1
an = 1/(2n-1)
(2)
bn
= an.a(n+1)
= 1/[(2n-1)(2n+1)]
=(1/2)[1/(2n-1) -1/(2n+1)]
Tn
=b1+b2+...+bn
=(1/2)[1 -1/(2n+1)]
<1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询