线性规划问题及其数学模型

 我来答
中地数媒
2020-01-16 · 技术研发知识服务融合发展。
中地数媒
中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命
向TA提问
展开全部

地下水资源管理的线性规划问题,通常可分为两大类:一类是从社会效益或环境效益出发,即在一定水文地质条件下,寻找供水或排水工程的最佳方案;另一类是从经济效益出发,在满足供、排水工程规划的情况下,寻求完成此工程经济效益最高或成本最低的方案。

线性规划问题包括三个要素:

(1)决策变量。根据已知条件及所要求的问题,用一组变量x1,x2,…,xn来表示,这些变量称为决策变量,取值要求为非负。

(2)目标函数。一个问题都有一个明确的目标,以决策变量的线性函数表示,称为目标函数,它是衡量决策方案优劣的准则。这种准则可用物理量(如水位,水量、水温、水质等)或经济指标(如利润、成本等)来衡量。

(3)约束条件。每一个问题都有一定的限制条件,这些条件称为约束条件。它是用一组线性等式或不等式来表示的,其变量与目标函数变量必须是有机联系或者一致的。

因为目标函数和约束方程都是决策变量的线性表达式,所以这类模型称为线性规划模型。线性规划的数学模型可表示为:

目标函数

华北煤田排水供水环保结合优化管理

约束条件

华北煤田排水供水环保结合优化管理

式中:Z为目标函数值;n为决策变量数;m为约束方程数;ai,j为结构系数;cj为价值系数;bi为常数项。

系科仪器
2024-08-02 广告
椭偏仪建模过程涉及光学测量与物理建模的结合。首先,通过椭偏仪收集材料表面反射光的偏振态变化数据。随后,利用这些数据,结合菲涅耳反射系数等理论,进行物理建模。建模过程中需调整材料的光学色散参数与薄膜的3D结构参数,以反向拟合出材料的实际光学特... 点击进入详情页
本回答由系科仪器提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式