3个回答
展开全部
设AB=x,BD=y,∠B=90°,CD=8,
tanC=AB/BC=x/(y+8),
∠BAD=2∠C,
所以tan2C=y/x=[2x/(y+8)]/[1-x^2/(y+8)^2]=2x(y+8)/[(y+8)^2-x^2],
去分母得y[(y+8)^2-x^2]=2x^2*(y+8),
整理得y(y+8)^2=x^2*(3y+16),
x^2=y(y+8)^2/(3y+16),①
由勾股定理,AC^2=x^2+(y+8)^2=144.②
把①代入②*(3y+16),得y(y+8)^2+(3y+16)(y+8)^2=144(3y+16),
整理得(y+4)(y+8)^2=36(3y+16),
(y+4)(y^2+16y+64)=108y+576,
y^3+16y^2+64y
........+4y^2+64y+256
..................-108y-576=0,
y^3+20y^2+20y-320=0,
解得y≈3.30142383,或y^2+23.30142 y+ 96.92788 ≈0,无正根。
代入①,x^2≈16.27781931,
AB=x≈4.03457796.
tanC=AB/BC=x/(y+8),
∠BAD=2∠C,
所以tan2C=y/x=[2x/(y+8)]/[1-x^2/(y+8)^2]=2x(y+8)/[(y+8)^2-x^2],
去分母得y[(y+8)^2-x^2]=2x^2*(y+8),
整理得y(y+8)^2=x^2*(3y+16),
x^2=y(y+8)^2/(3y+16),①
由勾股定理,AC^2=x^2+(y+8)^2=144.②
把①代入②*(3y+16),得y(y+8)^2+(3y+16)(y+8)^2=144(3y+16),
整理得(y+4)(y+8)^2=36(3y+16),
(y+4)(y^2+16y+64)=108y+576,
y^3+16y^2+64y
........+4y^2+64y+256
..................-108y-576=0,
y^3+20y^2+20y-320=0,
解得y≈3.30142383,或y^2+23.30142 y+ 96.92788 ≈0,无正根。
代入①,x^2≈16.27781931,
AB=x≈4.03457796.
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询