设a,b,c均为非零向量,且a=b×c,b=c×a,c=a×b,|a|+|b|+|c|=_______________?
2个回答
展开全部
a=(a1,a2,a3);b=(b1,b2,b3);c=(c1,c2,c3)
a×b=|
i
j
k|
|a1
a2
a3|
|b1
b2
b3|=(a2b3-b2a3,a3b1-a1b3,a1b2-a2b1)
所以:(a×b)·c=(a2b3-b2a3,a3b1-a1b3,a1b2-a2b1)·(c1,c2,c3)
=a2b3c1-b2a3c1+a3b1c2-a1b3c2+a1b2c3-a2b1c3
=a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-b2a3c1
同理,(b×c)·a=b2c3a1-c2b3a1+b3c1a2-b1c3a2+b1c2a3-a2c1a3整理得
=b2c3a1+b3c1a2+b1c2a3-c2b3a1-b1c3a2-a2c1a3
=a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-b2a3c1
同理可求得(c*a)*b
比较得:(a×b)·c=(c×a)·b=(b×c)·a,
a×b=|
i
j
k|
|a1
a2
a3|
|b1
b2
b3|=(a2b3-b2a3,a3b1-a1b3,a1b2-a2b1)
所以:(a×b)·c=(a2b3-b2a3,a3b1-a1b3,a1b2-a2b1)·(c1,c2,c3)
=a2b3c1-b2a3c1+a3b1c2-a1b3c2+a1b2c3-a2b1c3
=a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-b2a3c1
同理,(b×c)·a=b2c3a1-c2b3a1+b3c1a2-b1c3a2+b1c2a3-a2c1a3整理得
=b2c3a1+b3c1a2+b1c2a3-c2b3a1-b1c3a2-a2c1a3
=a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-b2a3c1
同理可求得(c*a)*b
比较得:(a×b)·c=(c×a)·b=(b×c)·a,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询