lim[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)] n趋于无穷 怎么做
1个回答
展开全部
设[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)]=S
则S<[1/(n^2+1)+2/(n^2+1)+....+n/(n^2+1)]=(1+2+……+n)/(n^2+1)=n*(n+1)/2(n^2+1)
有因为S>[1/(n^2+n)+2/(n^2+n)+....+n/(n^2+1)]=n*(n+1)/2(n^2+n)
且limn*(n+1)/2(n^2+1)=1/2(n趋于无穷)
limn*(n+1)/2(n^2+n)=1/2(n趋于无穷)
由夹逼原理知lim[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)]
n趋于无穷=1/2
则S<[1/(n^2+1)+2/(n^2+1)+....+n/(n^2+1)]=(1+2+……+n)/(n^2+1)=n*(n+1)/2(n^2+1)
有因为S>[1/(n^2+n)+2/(n^2+n)+....+n/(n^2+1)]=n*(n+1)/2(n^2+n)
且limn*(n+1)/2(n^2+1)=1/2(n趋于无穷)
limn*(n+1)/2(n^2+n)=1/2(n趋于无穷)
由夹逼原理知lim[1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)]
n趋于无穷=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询