勾股定理的验证方法有哪些?

全部... 全部 展开
 我来答
小小科技1
2020-05-03 · 专注科技小知识电脑周边
小小科技1
采纳数:38 获赞数:224

向TA提问 私信TA
展开全部
最常见的勾股定理证明方法是欧几里得证明,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在欧氏《几何原本》中,勾股定理的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明。如图,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
yekenyh
2020-05-03 · TA获得超过2312个赞
知道小有建树答主
回答量:1471
采纳率:93%
帮助的人:139万
展开全部

【证法1】

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.

从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4x1/2ab=c²+4x1/2ab, 整理得a²+b²=c²。

【证法2】(邹元治证明)

以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.

∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.

∴ 四边形EFGH是一个边长为c的

正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE,

∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o,

∴ ∠EHA + ∠GHD = 90o.

又∵ ∠GHE = 90o,

∴ ∠DHA = 90o+ 90o= 180o.

∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)².

∴(a+b)²=4x1/2ab+c²

∴ a²+b²=c²。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式