函数f(x)=-x²+2ax+1-a在区间[0,1]上有最大值2,求实数a的值
3个回答
展开全部
根据图像有三种可能最大值,f(0)=1-a
f(1)=a还有对称轴f(a)=a²+1-a
f(a)注销正意0≤a≤1
我们就验证f(1)和f(a),f(0)如果f(1)最大有a=2,对称轴为2,[0,1]递增所以f(1)为最大值,
f(a)=2,a=(1±根号5)/2不在0和空山1之间不成立f(0)=2有a=-1,对称轴为-1对称轴右边递减,f(0)为最大所以斗斗中a为-1或2
f(1)=a还有对称轴f(a)=a²+1-a
f(a)注销正意0≤a≤1
我们就验证f(1)和f(a),f(0)如果f(1)最大有a=2,对称轴为2,[0,1]递增所以f(1)为最大值,
f(a)=2,a=(1±根号5)/2不在0和空山1之间不成立f(0)=2有a=-1,对称轴为-1对称轴右边递减,f(0)为最大所以斗斗中a为-1或2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=-(x-a)²+a²-a+1
对称轴为x=a
当和森a∈[0,1]时,最大值=a²-a+1=2
a=(1+√5)/2或(1-√5)/2
两闷贺值都唤罩亩不合适
当a<0时,最大值=f(0)=1-a=2
a=-1
当a>1时,最大值=f(1)=a=2
a=2
综上,a=-1或2
对称轴为x=a
当和森a∈[0,1]时,最大值=a²-a+1=2
a=(1+√5)/2或(1-√5)/2
两闷贺值都唤罩亩不合适
当a<0时,最大值=f(0)=1-a=2
a=-1
当a>1时,最大值=f(1)=a=2
a=2
综上,a=-1或2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询