求x趋于0时,lnx+1/x的极限
2个回答
展开全部
limlne^(lnx+1/x)
=limln(xe^(1/x))
=ln[lime^(1/x)/(1/x)]
=ln[lim-1/x²e^(1/x)/(-1/x²)]
=ln[lime^(1/x)]
=limln[e^(1/x)]
=lim1/x
=+∞
通分这个
lim[lnx+(1/x)]
=
lim[(xlnx+1)/x]
分母x→0+,分子lim(xlnx+1)
=
1+limlnx/(1/x)
=
1+lim[(1/x)/(-1/x²)]
=
1-limx
=
1
不是0/0型,不能用洛比达法则,而是
lim[lnx+(1/x)]
=
lim[(xlnx+1)/x]
→1/0+
=+∞
注意x极限为x→0+,因为lnx要求x>0,如果不定x方向,则结果正负无穷不定
=limln(xe^(1/x))
=ln[lime^(1/x)/(1/x)]
=ln[lim-1/x²e^(1/x)/(-1/x²)]
=ln[lime^(1/x)]
=limln[e^(1/x)]
=lim1/x
=+∞
通分这个
lim[lnx+(1/x)]
=
lim[(xlnx+1)/x]
分母x→0+,分子lim(xlnx+1)
=
1+limlnx/(1/x)
=
1+lim[(1/x)/(-1/x²)]
=
1-limx
=
1
不是0/0型,不能用洛比达法则,而是
lim[lnx+(1/x)]
=
lim[(xlnx+1)/x]
→1/0+
=+∞
注意x极限为x→0+,因为lnx要求x>0,如果不定x方向,则结果正负无穷不定
翼腾生物科技有限公司
2024-12-14 广告
2024-12-14 广告
AB05PFR2PVH4这一串字符,在我们苏州翼腾生物科技有限公司内部,可能代表着某一特定项目、产品编号或是内部系统的识别码。我们公司作为一家专注于生物科技领域的创新型企业,致力于研发与应用前沿的生物技术。此编码的具体含义,需根据公司的数据...
点击进入详情页
本回答由翼腾生物科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询