反常积分的计算
2个回答
展开全部
给出一个反常积分,并告诉我们该反常积分收敛,则我们可以得到哪些信息。
通过反常积分的概念,可以知道这道题指的是在无穷区间的反常积分(只要一看积分区间有∞存在,即可知道该反常积分为在无穷区间上的反常积分),如果右边的极限存在,就称该反常积分收敛,这个概念说明该反常积分存在极限,这道题反常积分的瑕点为1。
那我们便可以将该反常积分分为两个区间来计算,一个区间是位于(0,1),另一个区间则是位于(1,+∞),我们可以先对第一个区间进行判断,因为要让该反常积分收敛,必须让两个区间的积分都收敛才可以。(一个是无界函数的反常积分,另一个则是无穷区间的反常积分。)
如果说这两个反常积分有一个不存在,就说明该反常积分不存在(发散),反之,要说明该反常积分存在(收敛),说明两个反常积分都要存在才可以。
由第一个区间判断可以得到,a<1;由第二区间判断可以得到当a+b>1时,收敛。
最后得到的结果便是,a<1,a+b>1,该反常积分收敛。
虽然有这道实例的支撑,但我对反常积分还是不够理解,直到我看到了瑕积分的判敛性定理:
定理一,f(x)在区间(a,b]上连续并且f(x)>=0,设该区间趋向于a的极限存在,那就可以得到当x的幂次方小于1,该反常积分收敛,根据这个定理我们就能够得到a<1这个结果的存在。
通过反常积分的概念,可以知道这道题指的是在无穷区间的反常积分(只要一看积分区间有∞存在,即可知道该反常积分为在无穷区间上的反常积分),如果右边的极限存在,就称该反常积分收敛,这个概念说明该反常积分存在极限,这道题反常积分的瑕点为1。
那我们便可以将该反常积分分为两个区间来计算,一个区间是位于(0,1),另一个区间则是位于(1,+∞),我们可以先对第一个区间进行判断,因为要让该反常积分收敛,必须让两个区间的积分都收敛才可以。(一个是无界函数的反常积分,另一个则是无穷区间的反常积分。)
如果说这两个反常积分有一个不存在,就说明该反常积分不存在(发散),反之,要说明该反常积分存在(收敛),说明两个反常积分都要存在才可以。
由第一个区间判断可以得到,a<1;由第二区间判断可以得到当a+b>1时,收敛。
最后得到的结果便是,a<1,a+b>1,该反常积分收敛。
虽然有这道实例的支撑,但我对反常积分还是不够理解,直到我看到了瑕积分的判敛性定理:
定理一,f(x)在区间(a,b]上连续并且f(x)>=0,设该区间趋向于a的极限存在,那就可以得到当x的幂次方小于1,该反常积分收敛,根据这个定理我们就能够得到a<1这个结果的存在。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询