小数的定义及概念
小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
性质:
在小数部分的末尾添上或去掉任意个零,小数的大小不变。例如:0.4=0.400,0.060=0.06。
把小数点分别向右(或向左)移动n位,则小数的值将会扩大(或缩小)基底的n次方倍。
其分类:
一、按照整数部分的情况分类,可分为:
1、纯小数,是指整数部分为“0”的小数。例如0.3、0.226等,都是纯小数。
2、带小数,是指整数部分不为“0”的小数。例如1.638、223.745等,都是带小数。
二、按照按照小数部分的情况分类,可分为:
1、有限小数,是指小数部分后有有限个数位的小数。如2.4768、0.524、6.3333333等,有限小数都属于有理数,可以化成分数形式。
2、无限小数,无限小数又可分为循环小数以及无限不循环小数。循环小数从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现的小数叫做循环小数。如 1/3=0.333333……等。循环小数亦属于有理数,可以化成分数形式。
无限不循环小数小数部分则有无限多个数字,且没有依次不断地重复出现的一个数字或几个数字的小数叫做无限不循环小数,如圆周率π=3.14159265358979323……等。无限不循环小数也就是无理数,不能化成分数形式。
1.小数的由来:
当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。
2.小数的定义:
小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
3.小数的组成:
小数由整数部分、小数部分和小数点组成。小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
4.小数的性质:
4.1 在小数的末尾添上或去掉任意个零,小数的大小不变。例如:0.4=0.400,0.060=0.06。
4.2 把小数点分别向右(或向左)移动n位,则小数的值将会扩大(或缩小)基底的n次方倍。(例如对十进制来说就是 10^n)
5.小数的分类:
5.1有限小数
小数部分后有有限个数位的小数。如3.1465,0.364,8.3218798456等,有限小数都属于有理数,可以化成分数形式。
一个最简分数可以被化作十进制的有限小数当且仅当其分母只含有质因数2或5或两者。 类似的,一个最简分数可以被化作某正整数底数的有限小数当且仅当其分母之质因数为此基底质因数的子集。
5.2 无限小数
5.2.1循环小数
从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现的小数叫做循环小数。如 1/7=0.142857142857142857……,11/6=1.833333……等。循环小数亦属于有理数,可以化成分数形式。
5.2.2无限不循环小数
小数部分有无限多个数字,且没有依次不断地重复出现的一个数字或几个数字的小数叫做无限不循环小数,如圆周率=3.14159265358979323……,自然对数的底数=2.71828182845904……。无限不循环小数也就是无理数,不能化成分数形式。