设函数fx=ax^2加bx+c且f1=a2求证函数fx在0到2区间内至少有一个零点

设函数f(x)=ax^2+bX+c,且f(1)=-a/2求证函数有两个零点设x1,x2使函数的两个零点.求|x1-x2|的取值范围求证函数在区间(0,2)内至少有一个零点... 设函数f(x)=ax^2+bX+c,且f(1)=-a/2
求证函数有两个零点
设x1,x2使函数的两个零点.求|x1-x2|的取值范围
求证函数在区间(0,2)内至少有一个零点
展开
 我来答
望炳戴正文
2020-07-29 · TA获得超过1387个赞
知道小有建树答主
回答量:1413
采纳率:100%
帮助的人:6.3万
展开全部
f(x)=ax^2+bX+c,且f(1)=-a/2
3a + 2(b + c) = 0 ,a = -2(b + c)/3 ,
证函数有两个零点 ,等价于证明b^2 - 4ac > 0 ,
等价于证明:b^2 > -8c(b + c)/3 ,
等价于证明:b^2 + 2(b + 2c)^2 > 0 ,
如果b 、c同时为0 ,则a也为0 ,则f(x)成为y轴 ,此时1不在定义域内 ,与
“f(1)=-a/2”不符 ,故b、c不同时为0 ,因此 b^2 + 2(b + 2c)^2 > 0 ,
.所以 ,函数有两个零点
|x1-x2|·|x1-x2| = (x1 - x2)^2
= (x1 + x2)^2 - 4x1x2 = (b^2 - 4ac)/a^2 > 0 ,|x1-x2| > 0
[f(0) + f(2)]/2 = [c + (4a + 2b + c)]/2 = a/2 ,与f(1) = -a/2 异号 ,
故分别在区间(f(0),f(1))和(f(1),f(2))内存在点:x0、y0 ,使得这两点的一阶导数值为0 ,(0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式