数学概念有哪些
2个回答
展开全部
概念 (mathematical concepts):是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。
在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则
什么是数学数学思想方法有哪些数学思维方法数学数学思维数学是什么数学定理大全数学方法有哪些数学的意义数学思想
概述
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵--对象的"质"的特征,及其外延--对象的"量"的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。比如,儿童对自然数,对运算结果--和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。
许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。
许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图形来表示,比如y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。
总之, 数学概念是在人类历史发展过程中,逐步形成和发展的。
数学概念
一、基本概念
1.描述统计。
通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。
2.概率的统计定义。
人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现"出现正面"或"出现反面"的次数大约各占总抛掷次数的: 左右。这里的"大量重复"是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:
可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。
例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;
某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1%。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?
因为前30年出现晴天的频率为0.83,所以概率大约是0.83
在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则
什么是数学数学思想方法有哪些数学思维方法数学数学思维数学是什么数学定理大全数学方法有哪些数学的意义数学思想
概述
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵--对象的"质"的特征,及其外延--对象的"量"的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。比如,儿童对自然数,对运算结果--和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。
许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。
许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图形来表示,比如y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。
总之, 数学概念是在人类历史发展过程中,逐步形成和发展的。
数学概念
一、基本概念
1.描述统计。
通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。
2.概率的统计定义。
人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现"出现正面"或"出现反面"的次数大约各占总抛掷次数的: 左右。这里的"大量重复"是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:
可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。
例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;
某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1%。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?
因为前30年出现晴天的频率为0.83,所以概率大约是0.83
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询