已知(4,2)是直线l被椭圆x2/36+y2/9=1所截得的线段的中点,则l的方程是
1个回答
展开全部
设直线和椭圆的交点为A(x1,y1)B,(x2,y2),AB中点坐标(x0,y0)
(x1+x2)/(y1+y2)=(2x0)/(2y0)=4/2=2
将A,B坐标代入椭圆方程:
x1²/36+y1²/9=1……①
x2²/36+y2²/9=1……②
①-②,(x1²-x2²)/36+(y1²-y2²)/9=0
整理得:(y1-y2)/(x1-x2)=-(1/4)(x1+x2)/(y1+y2)= -(1/4)x2=-1/2
L直线方程:y-2=(-1/2)(x-4),即x+2y-8=0
(x1+x2)/(y1+y2)=(2x0)/(2y0)=4/2=2
将A,B坐标代入椭圆方程:
x1²/36+y1²/9=1……①
x2²/36+y2²/9=1……②
①-②,(x1²-x2²)/36+(y1²-y2²)/9=0
整理得:(y1-y2)/(x1-x2)=-(1/4)(x1+x2)/(y1+y2)= -(1/4)x2=-1/2
L直线方程:y-2=(-1/2)(x-4),即x+2y-8=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询