不等式性质的应用
展开全部
不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子,他一般有如下八个基本性质。
基本性质
1.如果x>y,那么yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;
5.如果x>y,z<0,那么xz
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂
或者说,不等式的基本性质的另一种表达方式有:
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
⑧倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
基本性质
1.如果x>y,那么yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;
5.如果x>y,z<0,那么xz
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂
或者说,不等式的基本性质的另一种表达方式有:
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
⑧倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询