sinx/x积分0到正无穷是什么?
1个回答
展开全部
sinX/X在(0,无穷)的积分是π/2。
对sinx泰勒展开,再除以x有:sinx/x=1-x^2/3!+x^4/5!+…+(-1)^(m-1)x^(2m-2)/(2m-1)!+o(1)。
两边求积分有:∫sinx/x·dx=[x/1-x^3/3·3!+x^5/5·5!+…+(-1)^(m-1)x^(2m-1)/(2m-1)(2m-1)!+o(1)]从0到无穷求定积分。
则将0,x(x→无穷)(这里的x是一个很大的常数,可以任意取)代入上式右边并相减,即可得到结果∫sinx·(1/x)dx=π/2。
无限符号的由来
古希腊哲学家亚里士多德(Aristotle,公元前384-322)认为,无穷大可能是存在的,因为一个有限量是无限可分的是不能达到极点的,但是无限是世界上公认不能达到的。
12世纪,印度出现了一位伟大的数学家布哈斯克拉(Bhaskara),他的概念比较接近现代理论化的概念。
将8水平置放成"∞"来表示"无穷大"符号是在英国人沃利斯(John Wallis)的论文《算术的无穷大》(1655年出版)一书中首次提出的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询