如何求一个已知准线焦点的抛物线方程?

 我来答
哆啦休闲日记
高粉答主

2021-09-20 · 关注我不会让你失望
知道小有建树答主
回答量:2479
采纳率:100%
帮助的人:43.1万
展开全部

用y2=2px的参数方程

抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法 。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。

抛物线定义:平面内与一个定点F和一条直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线,定点F不在定直线上。

它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。

对称轴(顶点)在y 轴 左侧时 , a ,b 同号 ,对称轴 (顶点 ) 在 y 轴右侧时,a 、b 异号;对称轴(顶点)在y轴上时, b=0,抛物线的顶点在原点时, b=c=0。

当x=0时,可通过与y轴交点判断c值,即若抛物线交y轴为正半轴,则c>0;若抛物线交y轴为负半轴,则c<0 。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式