具体回答如下:
1+cosx=2[cos(x/2)]^2
1/(1+cosx)=0.5[sec(x/2)]^2
∫dx/(1+cosx)
=∫0.5[sec(x/2)]^2dx
=∫[sec(x/2)]^2d0.5x
=∫dtan(x/2)
=tan(x/2)+c
积分的意义:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。