大数据专业毕业生就业岗位有哪些?
展开全部
大数据的择业方向有大数据开发方向、数据挖掘数据分析和机器学习方向、大数据运维和云计算方向,主要从事互联网行业相关工作。大数据课程难度大,同时有大专本科学历要求!但工作需求大,毕业以后可以从事的岗位还是比较多的,回报高,待遇在年薪30~50万之间,如果是互联网大厂更高。大数据学习内容主要有:①JavaSE核心技术;②Hadoop平台核心技术、Hive开发、HBase开发;③Spark相关技术、Scala基本编程;④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;⑤大数据项目开发实战,大数据系统管理优化等。工作岗位列举几个热门:初级大数据离线处理,薪资10000-13000;Spark开发工程师,薪资14000-16000;Python爬虫工程师,薪资16000-20000;大数据开发工程师,薪资20000+。想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,建议实地考察对比一下。祝你学有所成,望采纳。
展开全部
大数据的择业方向有大数据开发方向、数据挖掘数据分析和机器学习方向、大数据运维和云计算方向,主要从事互联网行业相关工作。大数据课程难度大,同时有大专本科学历要求!但工作需求大,毕业以后可以从事的岗位还是比较多的,回报高,待遇在年薪30~50万之间,如果是互联网大厂更高。大数据学习内容主要有:①JavaSE核心技术;②Hadoop平台核心技术、Hive开发、HBase开发;③Spark相关技术、Scala基本编程;④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;⑤大数据项目开发实战,大数据系统管理优化等。工作岗位列举几个热门:初级大数据离线处理,薪资10000-13000;Spark开发工程师,薪资14000-16000;Python爬虫工程师,薪资16000-20000;大数据开发工程师,薪资20000+。想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,建议实地考察对比一下。祝你学有所成,望采纳。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大数据的择业方向有大数据开发方向、数据挖掘数据分析和机器学习方向、大数据运维和云计算方向,主要从事互联网行业相关工作。
大数据课程难度大,同时有大专本科学历要求!但工作需求大,毕业以后可以从事的岗位还是比较多的,回报高,待遇在年薪30~50万之间,如果是互联网大厂更高。
大数据课程难度大,同时有大专本科学历要求!但工作需求大,毕业以后可以从事的岗位还是比较多的,回报高,待遇在年薪30~50万之间,如果是互联网大厂更高。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大数据就业方向
1. Hadoop大数据开发方向
市场需求旺盛,大数据培训的主体,目前IT培训机构的重点
对应岗位:大数据开发工程师、爬虫工程师、数据分析师 等
2. 数据挖掘、数据分析&机器学习方向
学习起点高、难度大,市面上只有很少的培训机构在做。
对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等
3. 大数据运维&云计算方向
市场需求中等,更偏向于Linux、云计算学科
对应岗位:大数据运维工程师
当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。
1. Hadoop大数据开发方向
市场需求旺盛,大数据培训的主体,目前IT培训机构的重点
对应岗位:大数据开发工程师、爬虫工程师、数据分析师 等
2. 数据挖掘、数据分析&机器学习方向
学习起点高、难度大,市面上只有很少的培训机构在做。
对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等
3. 大数据运维&云计算方向
市场需求中等,更偏向于Linux、云计算学科
对应岗位:大数据运维工程师
当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大数据开发工程师:负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等;
数据分析师:进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见;
数据挖掘工程师:商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。
数据库开发:设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等;
数据管理:数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等;
数据科学家:清洗,管理和组织(大)数据,利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换;
数据产品经理:把数据和业务结合起来做成数据产品。
数据分析师:进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见;
数据挖掘工程师:商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。
数据库开发:设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等;
数据管理:数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等;
数据科学家:清洗,管理和组织(大)数据,利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换;
数据产品经理:把数据和业务结合起来做成数据产品。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询